jayrandom: (Default)
[personal profile] jayrandom
Месяц назад китаец Peter J.Lu опубликовал в журнале Science статью "Decagonal and Quasicrystalline Tilings in Medieval Islamic Architecture" (дополнительный иллюстративный материал). Одна из аннотаций по-русски (к сожалению, без имени автора).

Утверждается, что:

(1) пяти- и десятилучевые гирихи (мусульманские орнаменты) в какой-то момент (~1200г) перестали чертить с помощью линейки и циркуля, а вместо этого перешли к специальным типовым трафаретам с нанесёнными на них узорами, каковых трафаретов оказалось всего 5 разных видов (звезда, бантик, конфетка, пятиугольник и ромб).

(2) известно, что именно пяти- и десятилучевая трансляционная симметрия являются невозможными в кристаллах, поэтому подобные структуры назвали квазикристаллами. Можно бесконечно замостить плоскость многоугольниками нескольких видов так, что мозаика не будет периодической, хотя если в ней выбрать часть любого размера, то она повторится бесконечное количество раз (этакие двумерные иррациональные числа) - это показал Пенроуз на примере всего двух многоугольников ("кайт" и "дарт", либо два ромба разной степени сдавленности).

Так вот, в одной древней мусульманской постройке продемонстрировано именно это свойство пяти- и десятилучевых орнаментов: при весьма малом количестве цифр-элементов можно создать бесконечную неповторяющуюся стурктуру. Мало того, она ещё будет фрактальна (в другом масштабе тоже получается пяти- и десятилучевой узор, и он тоже - квазикристалл).

Получается, Пенроуз опоздал со своим открытием где-то на 500 лет (хотя выразил своё открытие в форме открытого знания). Забавно, что запатентовав свой узор, он потом судился с производителями туалетной бумаги, которые его напечатали. А любопытно, был ли узор на той туалетной бумаге неповторяющимся? :)


Однако рано утверждать, что китаец раз - и открыл всё про устройство гириха (как это было высвечено во второстепенных СМИ). Да, теперь стало очевиднее, что гирихом можно записывать двух- и более мерные иррациональные числа. Однако во-первых, неизвестно, было ли именно это целью средневековых мусульманских дизайнеров. И если да - какие именно числа они записывали, и что эти числа выражают.

Во-вторых, почему именно пять кубиков? Пенроуз начал своё теоретическое доказательство с огромного, но конечного числа, и, постепенно уменьшая его, дошёл до двух. Этакие "двоично-двумерные иррациональные числа". Интересно, чем 5 лучше двух? Дальнейшее уменьшение количества элементов было нецелесообразно?

В-третьих, далеко не все гирихи являются пяти- и десятилучевыми. У нас есть дома книжка арабских орнаментов - там в гирихе встречается и восьмеричность-шестнадцатиричность, и шестиричность-двенадцатиричность. И подобное разбиение на "китайские" многоугольники что-то не получается.

В общем, большая тема, есть над чем подумать.

Спасибо тем, через кого.
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

jayrandom: (Default)
jayrandom

January 2026

S M T W T F S
    1 23
45678910
111213141516 17
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 19th, 2026 11:00 am
Powered by Dreamwidth Studios